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Abstract. By using Mori memory funclion formalism we have derived a simple relation for 
the mass dependence of self-diffusion of a particle in an isotopic fluid. It has been shown that 
the selfdiffusion coefficient of a massive particle for a very large mass ratio (225) has a unique 
value at a given densiry and temperature which is 1 f4? times the self-diffusion coefficient of 
the fluid. The prediction of the formula has been supported by the recent molecular dynamics 
data on Lennard-Jones fluids. We have also studied the effect of density and temperamre on the 
mass-dependent self-diffusion coefficient. It is found that the ratio of self-diffusion coefficient 
of the heavy particle to that of the fluid is weakly dependent on thermodynamic state of the 
fluid. 

1. Introduction 

In recent years there has been considerable interest shown in studying the effect of variation 
in mass and/or size of particles on the transport coefficients of binary fluid mixtures. Such 
investigations have been possible only due to computer simulation and theoretical studies 
in which these parameters can be changed independently of each other. Very recently, 
molecular dynamics (MD) simulations has been performed by Nuevo, Morales and Heyes 
[I] in order to study the mass dependence of the self-diffusion coefficient of a single heavy 
particle in a fluid, for mass ratios ranging from 1 to 50 for Lennard-Jones (LJ) and Weeks- 
Chandler-Anderson (WCA) fluids. They showed that the self-diffusion coefficient of a 
Brownian particle with mass ratio more than 25 reaches a thermodynamic limit depending 
neither on its mass nor on the number of particles of solvent For smaller mass ratios their 
results confirm the weak dependence of the self-diffusion observed in previous findings 
by computer simulation 12-51 and from theory [6, 71. This weak dependence of the self- 
diffusion is contrary to the prediction of dilutegas results where it is known that it varies 
as the square root of the mass. The computer simulation carried out [5]  for an equimolar 
system of U isotopes led to the relation 

where m and ms are the masses of the solvent and of the species whose mass is varied. 
D(m) represents the self-diffusion coefficient of the species with mass m. The exponent 
p has been found to vary from 0.06 to 0.1. Although from MD simulations 131 and 
theory [6] within the Mori memory function formalism one can predict the weak mass 
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dependence of the self-diffusion, relation (1) has been found to be valid only roughly. These 
studies are based on the evaluation of Mori’s coefficients (or frequency sum rules) for the 
velocity autocorrelation function by using a Gaussian form of the memory function. Mori’s 
coefficients were evaluated using MD~simulations and by deriving microscopic expressions 
for them. The analytical expressions have the advantage that one can derive a relation for 
the mass dependence of the self-diffusion coefficient from them. Finding such a relation 
is very much desired, especially in the context of the recent findings of a unique value for 
the self-diffusion of massive Brownian particles, and this thus forms one of the aims of the 
present work. 

In the past all the studies [l, 3.61 of the mass dependence of the self-diffusion coefficient 
of a single heavy particle in a fluid have been made for only one thermodynamic state: 
therefore its dependence is not known as a function of density and temperature. In the 
present work, by using our theoretical procedure, we study it for different densities and 
temperatures. It is found that the ratio of self-diffusion coefficients of a heavy particle to 
that of the fluid is weakly dependent on density and temperature, and the variation is found 
to be at most of the order of 10% for the densities and temperatures investigated here. Here, 
it may be noted that in real Ruid mixtures/colloidal solutions. the mass, size and interaction 
energies of lone Brownian particles change simultaneously. So, our work is useful only in 
predicting the mass dependence of the self-diffusion of a particle. However, the theory can 
easily be extended for studying the effects of all other parameters affecting the self-diffusion 
of the particle. 

The organization of the paper is as follows. In section 2 we present the theory. In section 
3 the calculation and results are presented. The work is concluded in the last section. 

2. Theory 

The Green-Kubo expression which relates [8]  the self-diffusion coefficient to the normalized 
velocity autocorrelation function 4(t) is given as 

D = 1- @(r) dt 

where ks, T and m are the Boltzmann constant, temperature and mass of the system, 
respectively. Exact calculation of $ ( t )  is not yet possible as that involves the solution of 
a complicated many-body problem. However, it is shown by Mori [9] at the microscopic 
level that @ (r) satisfies the equation 

where M ( r )  is a memory function involving the Liouville and projection operators, and 
plays a key role in the study of the dynamics of fluids. The microscopic calculation of 
the memory function is now possible by using mode-coupling theory [IO] combined with 
microscopic evaluation [ 111 of the binary collision contribution to the memory function. On 
the other hand one can propose phenomenological forms for the memory function preserving 
a number of properties of the time correlation functions. Such a procedure [I21 has been 
exploited by many workers to study transport [13-16] and dynamical properties [13, 171 of 
the fluid. In fact very recently we have provided a theoretical basis for such an approach 
by deriving [I81 a hyperbolic secant memory function from the Mori equation of motion. 
Other forms of the memory functions which have been frequently used in the literature are 
the Gaussian and a simple exponential. All these phenomenological forms of the memory 
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function can in general be written in the form 

M ( 0  = K I F ( & ~ )  (4) 
where F ( x )  is some functional form of the memory function (say Gaussian), and K 1  and 
KZ am Mori coefficients of first and second order. These Mori coefficients are related to 
the frequency sum rules of the velocity autocorrelation function by 

where VZ and V4 are second- and fourth-order sum rules of the normalized velocity 
autocorrelation function. Taking the Laplace transform of equation (3) and using equation 
(2) we obtain 

where M(0) is the zero-frequency Laplace transform of the memory function. 
equation (4) for the memory function we obtain 

Using 

where 

For a two-component system in which the two species differ only in their masses, 
implying that they interact via the same intercalation potential. the Mori coefficients will be 
functions of only the masses for a given density and temperature. Therefore, we write 

and 

These provide the ratio of self-diffusion coefficients as 

which is independent of C and hence does not depend on the functional form of the memory 
function. From equation (11) we also see that mass dependence of the self-diffusion 
 coefficient^ depends only on the mass dependence of the Mori coefficients or frequency 
sum rules. The expressions for the sum rules for a system having only one heavy particle 
have already been derived by us 161 and these are given as 

(12) m 

(13) 

(14) 
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where 

where (Y runs over x ,  y and z coordinates. In the above equations g ( r ) ,  U ( r )  and n are 
the static pair correlation function, interatomic potential and number density of the fluid, 
respectively. While deriving these sum rules it is assumed that particles interact via mass- 
independent interaction potentials. The second term in equations (14) and (15) represents 
the three-body contribution expressed in terms of the two-body contribution by using a 
low-order decoupling approximation [7]. The exact expression for the triplet contribution 
to the fourth sum rule is given in the appendix. Using the above equations in equations (5) 
and (11) we obtain a relation for the mass dependence of the self-diffusion coefficients of 
the two species: 

(18) 
211/V2(m) - 4v2(m)  -- - D ( m )  

D G "  U I / V ~ ( ~ ) N  + m / m d  - ( m / 2 m ~ ) V z ( m ) '  
Neglecting the second part of the numerator and denominator (small compared with the first 
term), we obtain 

In the limiting cases where m approaches mB we find D ( m )  = D(mB), and when mB is 
very large we find that D ( m B )  = D ( m ) / f i .  This implies that however large the mass of 
the massive Brownian particle, the diffusion has a unique value for a given density and 
temperature of the fluid. This is a new and important result. The result is independent of 
the dimensionality of the system and of the nature of the interaction potential. 

3. Calculations and results 

In order to study the mass dependence of the self-diffusion of a system at various densities 
and temperatures using the expression derived in the above section, we need to evaluate 
only V2 and I, for a given density and temperature. The results for these can be obtained 
from our earlier work [14] in which we have presented the results for the sum rules of the 
velocity autocorrelation (VAC) function for Kr fluid. In table 1, we now present results for 
V2 and I1 for LJ fluids in reduced units for various n' (=nu3) and T' ( = K B T / E ) ,  where 
U and e are two parameters for LJ fluids. These results are useful as one can calculate 
self-diffusion coefficients for any mass ratio using equation (16). Before studying the mass 
dependence of self-diffusion we would like to test the approximations used in deriving 
equation (17). An approximation used in describing the three-body contribution to V, is 
tested by calculating it using the Kirkwood superposition approximation and comparing the 
results in table 1 with the approximation used in the present work. It can be seen from the 
table that a reasonably good agreement is achieved for all the densities and temperatures 
investigated here. Here. it may be noted that the use of the superposition approximation 
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Table 1. Values of the integrals Vi and I )  in units of c/moz and (< /moi ) i ,  respectively. for 
various densities and temperatures. V43 is the triplet contribution obtained using the superposition 
approximation. 

T' n* Vz 11 v43 v;/2 

0.90 0.75 225.14 83265.00 32054.37 25344.10 
1.23 0.20 53.90 24087.37 1647.00 1452.65 
1.23 0.30 80.21 36028.12 3705.75 3216.80 
1.23 0.42 111.01 50439.37 6588.00 6161.63 
1.26 0.50 136.68 63821.24 9882.00 9340.34 
1.28 0.60 179.03 86261.61 17705.25 16025.51 
1.20 0.70 228.44 108496.10 30469.49 26091.77 
1-16 0.84 345.86 173346.70 78644.23 59810.99 
1.81 0.20 55.18 33 145.87 1647.00 1522.65 
1.81 0.30 119.99 73497.36 7411.50 7199.24 
1.83 0.50 162.99 102525.70 13587.75 13282.23 
1.83 0.60 216.89 I38 142.10 24704.99 23519.98 
1.81 0.70 290.04 191257.80 46527.74 42061.07 
1.90 0.80 402.33 290283.70 95 114.23 80935.41 
2.57 0.20 62.24 50439.37 2058.75 1937.08 
2.47 0.40 139.89 112407.70 9882.00 9784.00 
2.48 0.50 192.50 158523.70 18940.50 18528.75 
2.50 0.60 261.16 222139.10 35410.49 34102.98 
2.56 0.74 179.67 369 133.80 88937.98 16 140.60 
2.50 0.80 473.56 437072.50 128054.20 112 128.60 
3.46 0.50 234.21 255902.60 27 175.49 27427.69 
4.50 0.50 273.35 361928.20 36645.74 37361.36 

makes no difference to the result for the sum rules of the VAC function, as judged [15] by 
the comparison with computer simulation results. 

In order to test the approximation used in deriving equation (17) from equation (16), we 
plot (D(m)/D(me)),/Z/(l fmlms) against mslm in figures 1 ,  2 and 3 for a various 
densities at temperatures T* = 1.23, 1.84 and 2.5, respectively. In these figures the 
horizontal line represents the prediction of equation (17) whereas all the other symbols 
represent results obtained using equation (16). Thus in the figures we have shown the 
deviation of the results for equation (16) from those for equation (17), and also the 
dependence of the mass dependence of the self-diffusion coefficient on the density and 
temperature of the fluid. It is seen from the figures that for all the thermodynamic states 
the deviation from 1 increases with the increase in mass, and it becomes almost constant 
for mass ratios greater than 25. This could easily be seen to follow from equation (16) 
by noting that the second part in the denominator becomes negligible with increase in 
mass ratio whereas the numerator is independent of the mass of the Brownian particle. It 
can also be seen from the figures that the deviation of the results for equation (16) from 
those for equation (17) increases with the increase in density and decrease in temperature. 
However, for all the densities, temperatures and mass ratios studied here this deviation is 
not more than 10%. Thus we are led to conclude that the mass dependence of self-diffusion 
is weakly dependent on the thermodynamic state and deviates slightly from that predicted 
from equation (17). 

In figure 4 we represent the results on the ratio of the self-diffusion coefficient of 
the Brownian particles to that of the fluid as a function of the mass ratios at T' = 0.9 
and n* = 0.75 where MD simulations have been performed. In figure 4 the solid line 
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Figure 1. The variation of ( D ( m ) / D ( m ~ ) ) J 2 / ( l  i m / m a )  with m a / m  for T*=1.23. The 
solid line represents rhe predictions from equation (17). All other symbols represent results 
obtained using equation (16) at the various densities given in the figure. 
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Figure 2. As figure i hut at T' = 1.84. 

represents the prediction from equation (17), whereas squares represent results obtained 
using equation (16). The MD results obtained using Mori's approach are represented by the 
diamond-shaped symbols whereas MD results obtained using the mean square displacement 
(MSD) method are represented by crosses. It can be seen from figure 4 that the prediction of 
equation (16) agrees well with the MD simulation results obtained using Mori's approach. 
However, MD results obtained by using the MSD method deviate more from the prediction 
of theory. But here it must be noted that the MD simulations for the U system are for a 
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small size (N = 256) of system and involve uncertainties a s  has been pointed out by Nuevo 
et al [l]. For example the value of the reduced self-diffusion coefficient of the WCA fluid 
for ms/m = 10 changes [I] from 0.060 to 0.085 when the number of particles in the system 
is changed from 108 to 29 16. Thus we see that the reasons for the deviations of MD MSD 
results from the present results may lie in the simulations of the small-size systems. Such 
a size dependence of Mori’s coefficients has been found to be very weak. 
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4. Summary and conclusions 

By using Mori's memory function formalism we have derived a simple relation for the 
mass dependence of the self-diffusion coefficient of a heavy particle in a fluid. We have 
found that for a mass ratio greater than 25 the self-diffusion coefficient of a heavy particle 
becomes almost constant. This agrees with the prediction of recent MD simulations. We 
have also studied the density and temperature dependences of the mass-dependent self- 
diffusion coefficients. It is noted that the ratio of the self-diffusion coefficient of a heavy 
particle to that of the fluid is weakly dependent on the thermodynamic state whatever the 
mass of the heavy particle. 
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Appendix 

The triplet contribution to the fourth sum rule of the VAC function for a particle with mass 
m is given by 

where g3(r ,  r , )  is the static triplet correlation function. The subscript 1 on U implies that the 
argument of the potential is changed from r to r ] .  The expression for the triplet contribution 
to the fourth sum rule for a heavy particle can be obtained from equation (Al) by replacing 
m by mB. For the evaluation of V43 we have used a superposition approximation given by 

(-42) g3(r3  TI) = g(r)g(rl)g(lT -TI  I). 
The rest of the details for the numerical calculations are in [14]. 
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